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Matsueda Aircraft Flasks
                     Model (GEOS CHEM)
                     Surface Measurements

(Tans et al.1998)

CO2 Mixing Ratio - Transports

           Model Column Average
           Model Surface mixing Ratio
           Difference
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+ CMDL 300-500mb CMDL Surface

1-7 October, 2003



GEOS-CHEM 3D Model
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Cs and Cf are the self and foreign component of the continuum absorption in 1/(cm-1 molecules cm-2)
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CO2 Sounding Channels
Individual Weighting Functions
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Auxiliary Sounding Channels
Individual Weighting Functions

Temperature

OzoneWater vapor



We consider the case where observations are made in a spectral region in the infrared where
several minor gases such as   CO2 , O3 , CO, CH4 and SO2 are radiatively active.

We define the residual function   G    as

We aim to find the set of   Xi   which minimizes the residual function.  We express the total
differential of        as
.

                           (3)

From the general property of total differentials, the condition that G in equation (2)

should have a maximum or a minimum at a point  (     ,         ,         ,         ) is that

each of the first partial derivatives  should individually vanish at that point. 

     (4)

Thus we reach an important conclusion that the value of the individual mixing ratio of each
of the minor gases is determined by the value that makes their first partial derivative, in
equation (4), vanish individually.  Therefore, even though the observed spectra cannot
differentiate between the individual lines, the partial differentials can!

G

!+
"

"
++

"

"
+

"

"
+

"

"
=

i

i

dX
X

G
dX

X

G
dX

X

G
dX

X

G
dG ....

3

3

2

2

1

1

)1(

2X
)1(

i
X

0,....,0,0,0
321

=
!

!
=

!

!
=

!

!
=

!

!

i
X

G

X

G

X

G

X

G

)1(

3X
)1(

i
X

! "#"=
$

$$ 2)()( )]()([ n

CM

n
G

Vanishing Partial Derivatives (VPD)

In GRL, November 18, 2005

doi :10.1029/2005GL024165
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VPD Method
Independence of the solution

from Initial starting value of the CO2 Mixing Ratio

Vanishing
Partial
Derivatives
Method

Chahine, M., C.  Barnet, E.T. Olsen, L. Chen, and E. Maddy, 2005:   On the Determination of Atmospheric Minor gases by the Method
of Vanishing Partial Derivatives with application to CO2, Geophys. Res Lett., 32, L22803,doi: 10.1029/2005Gl024165
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Total number of match ups= 78
 SD=  ±2.98 ppmv

 The monthly averages
(5.6 clusters/month)  yields
 SD=±1.20 ppmv

These are approximately related
by the Guassian relationship

Guassian (Uncorrelated) error
By VPD

26.1
6.5

98.2
=

SD:  0.43 ±1.20 ppmv
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Comparison with Matsueda Daily
Flask Measurements

October 1, 2003

SD:  -1.14 ±1.44 ppmv
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AIRS  Zonaly Averaged CO2

1-7 October, 2003
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Error Covariance Matrix -  CO2
1-7 October, 2003
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AIRS  Global  CO2 Maps
1-7 October, 2003

+  CMDL Aircraft 300-500mb

CMDL Surface

GEOS-CHEM  3D

Caltech/JPL 2D CTM

7 days

One Month
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Data filtering criteria:
• Only forward scan pixels
• Cloud free
• XCO2 error < 8%
• RMS < 0.007
• O2 fit error < 1.8%
• SZA < 70.

SCIAMACHY CO2, October 1-9, 2003

Data averaged over half degree bins.

SCIAMACHY CO2 data version 0.4 provided by Michael Buchwitz.
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AIRS  Global  CO2 Maps
1-7 October, 2003

SCIAMACHY

One Month

7 days

9 days
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AIRS  Global  CO2 Maps
1-7 October, 2003

Kawa  Oct 15, 2000

7 days

One Month
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Tropospheric O3 –VPD Solution
500mb

9.6
µ

14µ
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One Month

7 days

*           Ozonesondes

             AIRS

                Caltech/JPL 2D CTM
                GEOS-CHEM  3D
                J. Logan Climatology
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The Vanishing Partial Derivatives method
•    Opens up new spectral regions for retrieval of tropospheric minor
gases, even  where pressure broadening tends to limits the
usefulness of that spectral region
•    Leads to accurate results, uncorrelated and independent of the
background initial points

Future plans:
In 2007 we will apply the VPD method to resolve the boundary layer
and retrieve H2O, O3 and CO2 between the surface and 700mb.
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Thank you
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AIRS
GEOS-4

Column Precipitable H2O above 500mb
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GEOS-CHEM 2003

Xun Jiang
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Sensitivity of the Auxiliary
Ozone Channels

X


